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Controlling one-dimensional Langevin dynamics on the lattice
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Stochastic evolutions of classical field theories have recently become popular in the study of problems such
as the determination of the rates of topological transitions and the statistical mechanics of nonlinear coherent
structures. To obtain high precision results from numerical calculations, a careful accounting of spacetime
discreteness effects is essential, as well as the development of schemes to systematically improve convergence
to the continuum. With a kink-bearing* field theory as the application arena, we present such an analysis for
a (1+1)-dimensional Langevin system. Analytical predictions and results from high resolution numerical
solutions are found to be in excellent agreemgf0556-282(199)02822-2

PACS numbgs): 11.15.Pg, 02.56-r, 11.10.Wx, 11.30.Qc

[. INTRODUCTION used for spatial operators, and on the time stepping algorithm
used to solve the resulting set of coupled stochastic ordinary
In recent years there has been growing interest in extractifferential equations. In one space dimension a fairly com-
ing nonperturbative quantum dynamical information such aplete description can be given, since the question of lattice
topological transition rates from numerical Langevin andeffects is one of convergence properties of SPDE’s rather
Monte Carlo solutions of classical field theories at finite tem-than of renormalization.
perature[1]. At the next level of sophistication, several at- The configurational part of the partition function of a clas-
tempts have been made at developing schemes that treat losgical field theory in one space dimension is free from diver-
lying modes classically and high frequency modes quantungences. In particular, quantities such as kink densities, mea-
mechanically{2]. Moreover, the equilibrium and nonequilib- sured from finite difference solutions of the corresponding
rium classical statistical mechanics of nonlinear coherenSPDE's, converge to a well-defined limit as the lattice spac-
structures such as kinks has historically received much attering is reduced towards zero. The question of exactly how the
tion [3] in the condensed matter literature. Until fairly re- convergence scales withx is still a matter of practical im-
cently, computer memory and performance restrictions wer@ortance: numerical solutions are limited by the available
sufficiently severe that Langevin evolutions could only becomputing power and memory to a finite range of values of
carried out at fairly low levels of accuracy and resolution.Ax. While finite volume effects can be important in small
However, present-day supercomputers have overcome thiattices, they are not important if the total lattice length is
problem, at least for low dimensional systems, and one camuch larger than the longest correlation length. We will as-
well contemplate systematically studying, understandingsume that this is always the case in the considerations below.
and improving the accuracy of stochastic evolutions. In this A complete constructive procedure for determining the
paper we present just such a study applied(ie-1)-  spatial lattice error, and possibly eliminating it to some order
dimensional Langevin systems. in Ax, exists. The method proceeds as follows. In equilib-
Our focus will be on lattice errors for quantities computedrium, the probability of a given set of configurations can be
at thermal equilibrium. In calculations of this type, a stochas-calculated from the static solution of the Fokker-Planck
tic partial differential equatiofSPDB with a fluctuation-  equation corresponding to the particular spatial discretization
dissipation relation is solved as an initial value problem us-and time-stepping algorithm applied to the SPDE of interest.
ing finite differences. Because of the fluctuation-dissipationWith time-stepping errors tuned to be subdominant, the
relation, the system is eventually driven to thermal equilib-transfer integral4] corresponding to the lattice Hamiltonian
rium and at late times one may measure values of thermodyean be evaluated to some given orderAx. Correlation
namic quantities as well as time and space dependent corrinctions and thermodynamic quantities, which can all be
lation functions. These quantities can depend on the latticextracted from the transfer integral, explicitly exhibit lattice
spacing,Ax, on the total system size, on the discretizationdependences allowing the convergence to the continuum to
be read off directly. We describe this procedure in more

detail below.
*Electronic address: Imbett@lanl.gov In more than one space dimension, methods have been
Electronic address: habib@Ilanl.gov devised to improve the convergence to the continuum of field
*Electronic address: grantlythe@bigfoot.com theories formulated on the latti¢6]. These methods rely on
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renormalization group techniques and require an input frontomputations can also be carried out. In this case, it has been
either perturbation theory or non-perturbative numericalshown that the theoretical and numerical results agree within
studies. No direct analytic formulation of nonperturbative statistical bounds set by the finite volume of the simulations
physics is, however, possible in general. In contrast, in onél2].

space dimension, the physics of greatest interest ithiee- The classical partition function for g* theory, in any
mo)dynamics of kinks which is nonperturbative. The transferspatial dimension 2D <4, is super-renormalizable; i.e.,
integral allows us access to nonperturbative physics and cdhere are a finite number of perturbative diagrams that are
be formulated in the continuum as well as on the latfige divergent in the continuum, but can be ap'pr.oprlately sub-
Trullinger and Sasaki obtained the lowest-order lattice coriractéd by the inclusion in the theory of a finite number of

rections to the Scfitnger equation that emerges from the Suitable counterterms. The situation is different r1:
transfer integra[7]. They are proportional tax? and are the continuum partition function is finite and no renormaliza-

: ' : tion is necessary.
equivalent to a corrected on-site potential. As we show be An alternative approach to the one described here has

low, the latter result can be adapted not only to compute th%een suggested by Gleiser and IMu[13] who have pro-
order of the lattice errors but also to introduce a local coun- <" 3 perturbative counterterm for use (f+1)-
terterm in the stochastic evolution equations that In”'provegimensional Langevin equations. A weakness of the latter
the convergence to the continuum. proposal is that it relies on an approximation to the free
_The class of problems considered here aferl)-  energy; in many situations the latter is a poor indicator of the
dimensional classical field theories defined by the Hamily e dynamics of field theorigd4]. Moreover, their counter-

tonian: term is based on an approximate effective potential calcu-
1 D)2 lated by perturbing about a uniform state. We will show
_ I ‘9_ below, with both analytical and numerical results, the inad-
H dx| 5 7+ +V(P)|. 1) ; ) ; : ,
2 2\ dx equacy of their perturbative counterterm in dealing with the

. . convergence to the continuum.
The corresponding continuum SPDE, The paper is organized as follows. In Sec. Il we consider
the evolution of the probability density of the discretized
SPDE. We summarize published calculatipts,16 of the
effect of time discretization on the equilibrium density. The
transfer integral is introduced in Sec. lll. We perform calcu-
is second order in time, where wijh=1/kT, the noise and lations at finiteAx and show that the leading order correc-

2 2 J
ECD(XF ﬁcp(x)— 7o PO)O=VI(@)+F(x1), (2

damping obey a fluctuation-dissipation relation: tions to the continuum of observable quantities are propor-
tional to Ax?. An examination of the form of the
(FOGHF(y,s))=278""8(t—s)8(x—y). () schralinger equation at finitd x reveals a natural choice for

) ) a local counterterm with which to improve the convergence
4In this paper we will a;doptzthe egamp!‘e of the double-well properties of discretized Langevin equations. The alternative
* theory:V(®) = — (m“/2)®°+(g°/4)P". We shall work  one-loop approach of Gleiser and M is examined in Sec.
in a dimensionless form of the theory given by the transfory Numerical results are presented in Sec. V. In Sec. VI we
mations: ¢=®/a, x=mx, and t=mt, wherea?=m?/g2.  end with a discussion of our results.
Under these transformations, the original Hamiltonian be-

comesH=H/(m&’) whereH is of the same form as the || Ti4g DISCRETE TIME FOKKER-PLANCK EQUATION
original HamiltonianH, except that the potentidV(¢)=

—(1/12)p*+ (114) ™. Our first step in determining théequilibrium canonical
This theory admits the well-knowfanti-kink solutions  distribution to which a given Langevin dynamics converges

which, at zero temperature, are exact solutions of the statitor long times is to derive the corresponding Fokker-Planck

field equations connecting=—1 at x=(+)—% to ¢= equation. This can be done on the lattice as well as in the

+1 atx=(—)+. In thermal equilibrium, the balance be- continuum.

tween noise and damping is manifested in the balance of On the lattice, an SPDE is solved by updatiny guan-

nucleation and annihilation of kink-antikink paiig]. At low tities {¢;(t),m(t)} wherei=1,... N. We take the lattice

temperature, Wentzel-Kramers-BrillouiwKB) techniques Hamiltonian in one space dimensidfy, to be

applied to the transfer integrgd,10] yield the following pre- N

diction for the density of kinks: H""“:AXiZO

1 2
STHS()], ®)
i (B /KT) M2exp( — E /KT), (4)

with
whereE, = /8/9, the energy of an isolated kink. Supporting 1 2
numerical evidence exisf& 1], but precise results have been S(¢i)== M
difficult to obtain until recently due to the large amount of 2 Ax?
computing time needed at temperatures low enough to
clearly distinguish kinks. The best results obtained so far are
for a special double-well potential where exact theoretical

+V(gi), (6)

V(¢->=—3¢-2+3¢-4 @)
] 2 ] 4 [

105039-2



CONTROLLING ONE-DIMENSIONAL LANGEVIN . .. PHYSICAL REVIEW D60 105039

The corresponding Fokker-Planck equation for tin ari- The solution ofHpP[{¢,7}]=0 is the canonical distri-
ables has a static solution that can, in principle, be attained dtution approached by the discretized system at late times. Its
late times in a Langevin simulatidin the sense of ensemble form can be computed for smallt. To zeroth order for the
averages over individual simulations momenta and ordekt for the fields, we obtain

In practice the time as well as the space discretization of a

. . . . 2
Langevin equation leads to errors. The simplest stochastic B i
time stepping is of the Euler type and can be written as Plim ¢}]=ex _AXZ B 7+'Bs(¢i)
_ IH gt B dS
7Ti(t+At)_7Ti(t) At 777Ti(t)+(9¢i(t) +§i(t): —AtEWig—d)i , (14)
Gi(t+At)= (1) + Atari(t). (8)  where B'=pB(1+Atz/2). Note that the discretization in-

duces cross terms betweénand 7 in the canonical distri-
Bution. This is a general feature of higher order solutions in
At. (These terms rapidly become very complicaxeiffer-
ent time discretizations lead to different discrete time
27 1 Fokker-Planck equations. The numerical simulations de-
(&(1))=0, <§i(t)§j(t’)>27m5ij5w- (9)  scribed below employed a stochastic second order Runge-
Kutta algorithm[17].

The equilibrium density of configurations of the space-
and time-discretized theory is obtained by performing the
Gaussian integral over the momenta in Etg):

A 2 2
P[{¢}]=Aex{—mx2 (si0- 5] 22 H

We have chosen the case of additive Gaussian white nois
related to the dampingy by the (suitably discretized
fluctuation-dissipation relation:

In order to understand the effect of time discretization, it
is possible to write a discrete time Fokker-Planck equation
describing the evolution of the probability density functional
associated with Eq<8), (9) [16]:

P[{m, ¢} t+At] Ao,
(15
d d Hat
=exp( —Atma—d)_ Xex;{ Atﬁ( 777Ti+(9—¢_) The effect of the time discretization is explicitly seen as a
: ! : modification of the equilibrium density. Further integration
2 of Eq. (14) cannot be performed so easily because each
+Atz— P[{m, ¢}.t], (10) S(¢;) depends also onp;, ;. The functional integral of
B aw? P[ ¢#] over ¢ defines the configurational partition function
where summation over repeated indices is implied. For sim- N _
plicity this will be assumed in what follows and indices will Zy=2, f Dpe PAI=T] | dpe PS4 (16)
be dropped. The discrete time equat{@) can be written in =1
the form

which we study in the next section. Hereg= Nd¢; , with
P[{m, ¢}, t+At]=e AHeeP[ {7, ¢} t]. (1)  N=Bl2wAx.
A calculation of the type outlined in this section can be
The operators in the two exponents in H40) are non-  ysed to evaluate the error due to finiié in the canonical
commuting. To reduce Eq10) to the form(11) we use the distribution for more complicated time stepping than the Eu-
Campbell-Baker-Hausdorff theorem: given the operal®rs |er method considered abo\és]. Alternatively, in cases

andB, there is an operatdE such thate”e®=e®, with where one is purely interested in sampling from a canonical
1 1 1 distribution, there exist efficient “hybrid Monte Carlo”

C=A+B+=[A,B]+ —[A[AB]]+—[B,[B,A]]+ .... methods that randomize the momenta, then accept or discard
2 12 12 configurations based on a Metropolis tgk8]. These meth-

(12) ods permit the elimination of thAt dependence in the ca-
nonical distribution. However, they do not generate the dy-
namical evolution that we are interested in, such as

) trajectories of individual kinks. In practice we have found it

Expanding to first order it, we have

n & g 9
T +—| npm+

aHIat
Hep=7 ——
B o dp I

d

possible, givem\x, to use a value oAt and a time stepping
algorithm such that the errors due to finite time steps are
smaller than those due to finite grid spacing.

1 70 Ml d 1  PHg d
+ At g+ - — —— — 5 Atw —
2 Baom  dP |dp 2 ag? dm lll. THE TRANSFER INTEGRAL
+O(At?). (13 To compute the partition function we use the transfer in-
tegral method4]. The configurational partition functiod,,
Notice that each factor dfl,;; introduces a power ohx. is given by
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< _ N e 12 BAXV(¢;1 1)
Z4= f_ d¢1"'d¢Ni1:[l T(di dis1), a7
_ XJ’ dae* ﬁ/ZAx(¢i+1*¢i)2e(¢if¢i+1)a/a¢i+1x(¢i+l)

h
where =e Py ( s ), (23
1 i+ i
T(qgi,d,iﬂ):exp{—zﬂAx{(d’ Alx ¢i\? +V(;) where
x(¢p)=e" M2V Oy (). (24
V(is1) ] The special form of the Fredholm kernel has led to a simple

Gaussian integral that yields

and ¢y, 1= ¢4 implements spatially periodic boundary con-
ditions. The difficulty with evaluating , lies in the coupling
of integrals at different space points. The idea behind the —e By (1) (25)
transfer operator method is to “localize” the evaluation of m il

the integrals in Eq(17). This (exac} result yields the form %ePe” =€y whereU
The transfer operator is defined as follows andD are operators an@ is a real number. The Campbell-
Baker-Hausdorff(CBH) series in this case is formally an

I expansion in powers aix. To linear order iMx, the CBH
bir1)= jﬁwdd’iT(d’i bir 1) Y( ). (18 expansion applied to Eq25) yields

2
e L2 BAXV(&; 1 1) o(AXI2B) 719 (e V2BV )y (1))

A e~ BAXV(¢)+ (Ax/2B) (azmz/)z)lr,ln((ﬁ):e—ﬁAXEnwn(qs), (26)
Suppose we can find the eigenvaluestofThat is, suppose

we can solve the following Fredholm equation: or equivalently
© 1 &
f d¢iT(¢i a¢i+1)¢n(d’i):tn¢n(¢i+1)l (19) T2 _2 (¢) wn Enwn- (27)
x 2B dd
where thet, are positive constants that we write for later The transfer integral .technique thus reduces the calculation
convenience as of Z, to the pa_lculanon of_ the eigenvalueg of a corre-
sponding Schrdinger equation:
t,=e Aixen, (20) 1 2
T ST U(¢AX)]¢ €ntn, (28)
Then [ 28 5¢2 nom
where U(¢,0)=V(¢). The calculation is explicitly per-
Z¢ZE t?- (21  formed on the lattice, at finitdx: leading order corrections
n to the eigenvalues of the Schiinger equatior(28) are pro-

portional toAx?. For the problem at hand, one finpig|
In the limit N— o, the sum(21) is dominated by the largest

eigenvalue: 1 & PP (A) 1 aV\2 1 4?V ¢?
—_— — — X — e ——
232 9¢p? 4\9¢ 232 ap? Ip?
_ N_ 4 N_ —BLe
Zy=2 thoty=e o @2 1AV 1| 9
T2 agt 09 sptagt) | I

whereL=NAx is the physical length of the lattice. In the

thermodynamic limitL —, the free energy density is sim- Higher order corrections inx in Eq. (29) can be computed

ply Fy=e€o. It is clear that once the partition function is in a tedious though straightforward fashion by going to

known in the thermodynamic limit, we may compute from it higher orders in the CBH expansion. Because of the symmet-

any thermodynamic quantity. Moreover, it is possible toric form of Eq.(25) and the Hermitian—anti-Hermitian alter-

show that spatial, and in linear response theory, temporaiation of terms in the CBH expansion, the error terms are

correlation functions can also be computed via a knowledgelways of even order in powers dfx. Thus, if a method is

of the spectrum of the transfer operaf@g]. found to cancel errors up to a certain orawerit automati-
We now turn to the procedure for the solution of EtP) cally reduces the error to order+2.

by first converting it into an infinite order partial differential  The simplest example ofAx dependence is the free

equation. We first rewrite Eq19) as theory: V=1 ¢?. Then Eq.(29) reduces to
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1 # 1 The error Hamiltonian can be read off from Eg9) and it is
—— 5" Em’2¢2 Un=€nthn, (300  clear that the error in energy differences, and hence kink
2B'° d¢ density at low temperatures, is al€§Ax?) at leading order.

Corrections to the the eigenstates lead to higher ofder
with g'=p/y1—a, m'=\1+a/2 anda=(Ax)*6. This  gependences. g J
imPIie§ ir,1 particlzular for thle energy spectrurg, = (n More generally, given any eigenvectpp) of the con-
+2)m'/B"=(n+2)(UB)[1~2(AX)"]. The free theory iS inyum Schidinger equation, for the specific form 6H of

a convenient special case because the corresponding SPDEHg (29), integration by parts and use of E@8) yields[7]
linear and exactly solvable. Quantities such(@g(x)) can

be evaluated exactly and compared to the results from the (Ax)? dv)\?
transfer integral. Both procedures agree, and (yloH|y) =~ —, <'Jf|(@) [¥). (35
oo 1 1 1 1, . Apart from the eigenvectors, there is no temperature depen-
(¢°(x))= g A2 - ﬁ 1- gAX +O(AXT). dence in Eq(35). This remarkable fact immediately suggests
14— the introduction of a counterterm in the lattice equations
4 which, in perturbation theory, would lead to the cancellation
(31 of errors of order Ax)2. Modifying the potential as follows,
Note that the leading dependence on lattice spacing is pro- (Ax)2[dV)2
portional toAx2. V()=V(¢$)— —;~ ab) (36)

We now turn to the question of lattice errors in determin-

ing the kink density, which, at sufficiently low temperatures, jeads to the cancellation of lattice dependences to order
is controlled completely by the correlation length derived(Ax)2 in a way that preserves the fluctuation-dissipation re-
from the two-point function(¢(0)¢(x)). Applying the |ation (taken at any temperatyrand is thus suited for dy-
transfer integral formalism, it can be shown that this correnamics as well as thermodynamics. Wit taken to be
lation function is a sum of exponentials with exponents prosmall enough, the leading error now becomes dominantly
portional to differences of eigenvalues of Eg8). The cor-  o(Ax)*. We note that unlike the situation for partial differ-
relation length is determined by the energy differencegniial equation¢PDE’S where one improves the lattice ap-
between the ground and first excited states of(E8). [4]. At proximation for spatial derivatives, here a local counterterm
low temperatures, the WKBr semiclassicalapproximation produces the same effect.

is excellent and_ t.hIS energy difference is the exponentially |, the specific case of @* potential, the counterteri36)
small tunnel-splitting term. Note that at low temperatures thegives a new potential including the termAx2¢%/24. The
kink density is given directly by the correlation lengi,  corrected potential is thus unbounded from below. In first

=1/(4\.) [11]. _ _ _ order perturbation theory this is not a problem since the cor-
At low temperatures the first two eigenfunctions of Eq-responding wave function is exponentially small in the
(27) are of the form pathological region of the compensated poter{t/dl How-

ever, if the full potential is to be used in a Langevin simula-
_ n tion it is clear that at sufficiently long times, the unbounded-
s= E(’m Yr), ness of the potential implies the nonexistence of a stable
thermal distribution. Fortunately, it is simple to estimate
whether this problem actually shows up in real simulations.
(32)  The answer, as we show below, is that it is of absolutely no
practical significance in the parameter range of interest.
The resolution of this apparent difficulty brings us back to
where s is the (symmetrig ground state angi, is the(an-  the validity of the expansion idx. So far we have implic-
tisymmetrig first excited state. Herg, andig are the usual jtly assumed thaB=1, so thatAx is the only small param-
localized states, one on each side of the barrier. To estimatger and controls the order of the expansion. If on the other
the error due to finite lattice spacing we use first order perhand one wanted to work in a regime wheka=g, the
turbation theory in 4x)?. The corrected energies are then whole expansion il\x would have to be rederived in terms
of an appropriate small parameter. In any case this latter

1
‘PAZE(%_I#R),

EBAX): Eo+(¥d sH|¢s), regime would always constitute a poor approximation to the
continuum: It is the Isingdisordey limit of the field theory.
EC=E;+(yal 8H| ), (33 A simple argument for why the counterterm works at

_ small temperatures, meanidgk<< 3, is the following. Con-
whereE, andE, are the results from the continuum theory sider a large temperature relative to the potential barrier be-
and sH~O(Ax?) is the error Hamiltonian. It follows that tween the minima. Then, from the uncorrected eigenvalue

the energy difference is equation,(¢(x)?)=p"1. On the other hand, the value of
(%) ¢(x)? for which a fluctuation can probe the effect of the
AEjo" = AE10— 2(y | 6H| g). (34 negatived® term at larges is ¢%(x)=6/(Ax)2. Therefore
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the condition for the negativé® term to not affect the evo- whereK=S/S;;. Performing the 1Ck-space trace integral,

lution is A?x<63. At lower temperatures it is more appro- (m=0), with an ultraviolet cutoffA = 77/ Ax, we obtain one

priate to explicitly calculate the Kramers escape @& loop corrections to the potential

across the barrier separating the metastable and unstable re-

gions of the compensated potential. Assuming the lattice T TAX

sites to be uncoupletthis gives an overestimate of the true Vi (p,A)=Vy+ Z\/s;’(d)b)— —ZS,’(¢>b). (42

rate), the calculation yieldd x ~exp(—48/3(Ax)%), which Am

turns out to be vanishingly small in practice: Fox=0.5, - o ) _

B=5, and a lattice size of £0points, the probability of an The partition function is now approximately given by

escape at a single site per unit time is orlyL0™ %%, In our

numerical calculations we have verified that the counterterm Z=e Sl + (L/4B)INS/(dp)— (AX/4p7%) S/(dn) (43

can indeed be successfully used in the appropriate circum-

stances with no hint of any instabilities. Equations(42) and (43) constitute the basis for the pro-
posal of Ref[13]. In order to cancel the leadingx depen-

IV. THE ONE LOOP APPROACH dence arising in this scheme, the original bare potential is

. . modified by the addition of the last term in E@2) (with a
In contrast to the above considerations, the one'looﬁ’_)ositive sign.

counterterm proposed in R¢fL3] arises from the conjecture ~ njgtice that while a careful accounting of the dynamics on
that the leading dependence of the partition functiomen e |attice yields a leading correction of ordérx)2, regard-
coincides with the most divergent term for the same theoryasg of any assumptions about the dominant thermodynamic
in higher dimensions. Although the relevant computationse|q configurations, the one-loop procedure leads to a cor-
are well known we will spell out some of the steps to makeyection of orderAx. In contrast to the correct answer dis-
every assumption clear. The basic idea is to start again WitQssed in the previous section, the one-loop procedure gives
the canonical partition function: no corrections for the free theory since in this c8se0.

_ — B9
Z—Nf D ge ASI9l, (37 V. COMPARISON WITH NUMERICAL SOLUTIONS

Accurate Langevin studies of even one-dimensional field
theories require large lattices and long running times. It has
only recently been realized, by comparison against exact
analytic results for nonlinear field theories, that fairly large
errors(e.g., 30% or greater in the kink dengitgan easily

The field ¢ is then decomposed into a background figig
and a fluctuation fieldk, ¢= ¢+ x, and assuming the fluc-
tuations to be small, expanded arouggl:

oS 1 _528 arise if numerical studies are not carried out with careful
S[</>b+x]~3[¢b]+5¢ Xtox—5  xt.... .
o o7 error control methodologigd 2].
x=0 (39) In order to test the predictions of the previous sections,

we ran large scale Langevin evolutions with typical lattice

If ¢y, is an extremum o§[ ¢] then the first term vanishes. sizesN=10°, and with the time step related to the lattice
Under this assumption spacing byAt=0.05Ax2.

A first test which allows comparison against exact analyti-
cal results are the lattice dependences for the linear SPDE
(free theory defined byV(¢)= ¢?/2. Figure 1 shows the
plot of the thermal equilibrium % ($?) versusAx. The nu-
Because§25/6qb2|X:0 is independent of the functional in-  merical data are in excellent agreement with téeac) the-
tegration is strictly Gaussian and can be performed exactlyoretical predictions.

In the more general case of a nonlinear SPDE, we cannot
o s S expect explicit exact solutions for arbitrafyx, but thermo-
Nf Dye ARAIX (55560 [ -ox=Det 2 —-|. (400  dynamic quantities can be obtained to orded from the
So eigenvalues of the perturbed ScHirmger equation extracted
from the transfer integral, as described in Sec. Ill. In the case
of predictions for the kink density, precise comparison with
numerical results has not been possible until recently, partly
due to the difficulty of counting the number of kinks in a
noisy configuration. The correlation length is, however, a
to ¢. . . :
. . well-defined quantity at any temperature, independent of

This can be written as kink-counting schemes.

We extract the correlation lenghh, from the numerically
—Det Y(1+K)=g~ (1/2)Trlog(1+K) determined field configurations as follows. Let

Z=Ne ALl j Dye A2 x (9667 —ox (39

U

Here we have adopted the usual normalization to the fre
theory. The actiors=Sy+ S, was decomposed into the ac-
tion for the free theonys, (gradient and mass terpnand the

interactionsS; . Primes denote functional derivatives relative

U

Det™ 1’2( s
So

(41) c(iAx)=(a(j)$(j +i)), (44)
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FIG. 1. The dependence of-I ¢2) on Ax, for V()= ¢2/2. FIG. 2. The correlation length computed with the bare poten-
The numerical results®) at 3=2 are compared with the exact tial (@), the counterterm of Eq36) (¢ ) and the one-loop coun-
equilibrium result(31) (solid line). The dashed line shows the Tay- terterm (A), for Ax=0.5 andg8=5. The dashed line shows the
lor expansion of Eq(31) to orderAx?. Statistical error bars are not continuum exact result, computed via the transfer integral.
shown if they are smaller than the symbol size.

as a function of time for four values dfx. From the plateau
and for moderate times, we can obtain a fairly precise estimate of

(%) _1 ém. As a cautionary note, we point out that at smsl, a
c(x o \

A =Axllogl ——22— ) _ 45  Small step size is also needéske Fig. 4 _

(x) X( ©d c(x+ Ax)) 49 It is possible to employ a Gaussian approximatifml-

lowing Ref.[11]) to obtain a rather good estimate #f, as a
function of Ax, the result being shown in Fig. 5: The leading
dependence, both analytically and numerically, is clearly
quadratic inAX. To obtain the analytic result, we use the fact
that the probability density o is the square of the ground

The correlation functiore(x) is in general a sum of ex-  state of the Schdinger equatiori28). (This density emerges
ponentials (the smallest exponent being the correlationfrom dynamic simulations or calculations; it is not an input
length. For values ofx much smaller than the correlation to numerics.
length, thereforeh(x)<\.. In practice, for largex, finite We proceed further by using a Gaussian angaiz for
statistics mean that the ratio in E@5) cannot be evaluated the ground state eigenfunction (&7):
precisely. One therefore evaluates the correlation length by
plotting A (x) versusx and looking for a plateau at interme-
diate values ok.

We measured the correlation length using three different
Langevin evolutions:(a) A standard simulation using a
second-order stochastic Runge-Kutta integratior;a simu- ' '
lation with the counterterni36); (c) a simulation with the
counterterm proposed in RgfL3]. Results forAx=0.5 are
shown in Fig. 2. The counterter(36) shifts the result from
the Langevin evolution$a) on the lattice very close to the
exact continuum result, shown as a dashed line. The standard
simulation overestimates.,, whereas the one-loop counter-
term results in an underestimate with an error larger than the
“bare” simulation (a) without any counterterm.

As a further test we repeated, with large lattices and
smaller time steps, a numerical experiment presented in Ref.
[13]. The initial condition is chosen uniform at the minimum
of V(¢), ¢o=—1; the system is then run for a short time : :
(before any kinks appepso as to observe the relaxation to a 0 100 200 300
mean valueg,,. Although this does not result in a strictly ¢
thermalized Configuration, small WaVEIength fluctuations FIG. 3. Early evolution of the space-averaged mean valug of
quickly display a thermal spectruniln other words, the for different values of the lattice spacingx. From top to bottom,
“phonon” relaxation time is much smaller than the times- the lattice spacings atex=0.25, 0.5, 0.75, 1.0. We used lattices
cale for kink nucleation.In Fig. 3 we show the value df¢) of 1048 576 points andt=0.05Ax?. =10, n=1.

The correlation length is lig, A (X):

(P(0)p(X))—exp(—Xx/\.), X—o. (46)

1/4 1
eXF{‘zﬂ((f’—(f’o)z)- (47)

Q
l//o(ﬁb):(;

—0.940

& —0.945

—0.950

>
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—-0.936 '

-0.938

—-0.940

<p>

—0.942 1

—0.944

Az=0.25,At=0.05

Az=0.25,4{=0.003125

0 100

FIG. 4. Early evolution of the space-averaged mean valug of

200 300
t

for two values of the time stefit, with =10, »=1.

The parameter$§) and ¢, are obtained by minimizing the

energy

{92

ke 1
Eo= fwll/o(@( _2_[32(9752+V(¢)

o(p)de.

For largeB the two free parameters are related by

Q=p(345- 1)+ 0(1),

and

1, 1 1
Eo=— 564+ 7 b4+ B715(305- 1Y+ 0(872).

The dependence @f,, on Ax can now be estimated using
the Gaussian approximation of Eg7). At finite Ax, we

(48)

(49

(50

replaceV(¢) in Eq. (48) by V(¢)+ £ Ax3(d/dg) V(¢))2.
Minimizing Eg. (50) with respect tog, gives

0.948

0.946

0.944

<¢p>

0.942

0.940

0.938 !

0.0 0.2

FIG. 5. Space- and time-averaged mean valug ¢ér different
values of the lattice spacinyx. The solid line is the larg@ esti-
mate (51) obtained from the Gaussian ans&i7) with 8=10,

0.4 0.6 0.8
Ax
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11
_ —1p 2 -2
$o(AX) = ¢o(0) + B~ "Ax 64\/§+(’)(,3 ), (5]

which is plotted in Fig. 5, in excellent agreement with the
numerical results.

VI. CONCLUSIONS

We have presented a procedure to identify space and time
discreteness effects in Langevin studies ¢fi+1)-
dimensional field theories on the lattice. This scheme permits
the determination of the correct continuum limit of the
theory in thermal equilibrium. In particular, we have shown
that for the standard spatial discretization of the Langevin
equation, quantities of interest such as the kink density and
the expectation value of the field and its variance differ from
the continuum values by terms of ordex?. High resolution
numerical results are in excellent agreement with our analyti-
cal predictions.

In any numerical Langevin solution, errors result from the
necessary discretization in both time and space. The effect of
the former is to modify the form of the canonical distribution
as seen from the stationary solution of the corresponding
Fokker-Planck equation. The use of higher order time step-
ping algorithms can render this error subdominant when
compared to errors arising from the discretization of the spa-
tial lattice.

Spatial discretization errors can be computed systemati-
cally in powers of Ax)? via the use of the transfer integral
to solve for the partition function on the lattice. This proce-
dure leads to the identification of a simple local counterterm
that removes the leading order lattice error in Langevin evo-
lutions at low temperature.

For the ¢* theory in one space dimension, the density of
kinks converges to a well-defined value at any temperature
low enough that kinks are clearly separated from small
wave-length fluctuationgor “phonons”). In practice this is
essentially the range of temperatures where the dilute gas
approximation(which is equivalent to a WKB solution of the
transfer integralis valid. Precision calculations over a wide
range of temperatures that agree with transfer integral pre-
dictions are reported in Reff12]. For quantities that are de-
fined unambiguously at arbitrary temperatures, such as the
correlation length, results based on the WKB approximation
to the transfer integral will fail at sufficiently high tempera-
tures. This is independent of lattice errors and does not pre-
clude analytical and numerical study using lattice simula-
tions.

Our results disagree with those reported by Gleiser and
Mdiller based on a one-loop countertef@8]. A critical ex-
amination of their proposal has shown that it does not in fact
constitute a scheme for the control and elimination of lattice
errors. We have also carried out a direct comparison of our
numerical results with those presented in H&f3] and are
led to conclude that their data must have been of insufficient
quality to quantitatively characterize lattice spacing depen-

=1. Statistical error bars are not shown if they are smaller than thelences.

symbol size.

Finally we wish to reiterate that the methods presented

105039-8
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here depend on the use of the transfer integral to s@xe are known in several interesting cases, most notably perhaps
actly) for the nonperturbative field thermodynamics. The ap-for the 2D Ising model on a square lattice. It is therefore
plication of the procedure described above is in general guacconceivable that the detailed approach to the continuum in
anteed for anylocal) field theory in one spatial dimension, these models can be understood via the procedure described
requiring only the choice of the appropriate potential. above.
In higher dimensions such a solution becomes increas-
ingly difficult. Nevertheless, for the particular case of two
dimensions several lattice models can be solved exactly, pre-
cisely by applying the transfer integral technig&2]. The We wish to acknowledge very helpful contributions from
eigenvalue problem, elegantly posed in terms of an ordinarfNuno Antunes, who participated in the early part of this
time-independent Schiinger equation in one dimension, work. Large scale computations were performed on the T3E
now amounts to solving for the eigenvalues of an infiniteat the National Energy Research Scientific Computing Cen-
matrix. Regardless of this apparent difficulty, exact solutionger (NERSQ at the Lawrence Berkeley National Laboratory.
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